My Test Tube Filled with DNA is Better than Your Mesos Cluster
Wednesday, August 31, 2016 at 9:10AM 
We’ve seen computation using slime mold, soap film, water droplets, there’s even a 10,000 Domino Computer. Now DNA can do math In a test tube. Using addition, subtraction, multiplication, and division.
It’s not fast. Calculations can take hours. The upside: they are tiny and can work in wet environments. Think of running calculations in your bloodstream or in cells, like a programmable firewall, to monitor and alert on targeted health metrics and then trigger a localized response. Or if you are writing science fiction perhaps the ocean could become one giant computer?
The applications already sound like science fiction:
Prior devices for control of chemical reaction networks and DNA doctor applications have been limited to finite-state control, and analog DNA circuits will allow much more sophisticated analog signal processing and control. DNA robotics have allowed devices to operate autonomously (e.g., to walk on a nanostructure) but also have been limited to finite-state control.
Analog DNA circuits can allow molecular robots to include real-time analog control circuits to provide much more sophisticated control than offered by purely digital control. Many artificial intelligence systems (e.g., neural networks and probabilistic inference) that dynamically learn from environments require analog computation, and analog DNA circuits can be used for back-propagation computation of neural networks and Bayesian probabilistic inference systems.





