Recommend Sean Hull's 20 Biggest Bottlenecks that Reduce and Slow Down Scalability (Email)

This action will generate an email recommending this article to the recipient of your choice. Note that your email address and your recipient's email address are not logged by this system.

EmailEmail Article Link

The email sent will contain a link to this article, the article title, and an article excerpt (if available). For security reasons, your IP address will also be included in the sent email.

Article Excerpt:

This article is a lightly edited version of 20 Obstacles to Scalability by Sean Hull (with permission) from the always excellent and thought provoking ACM Queue.

1. TWO-PHASE COMMIT

Normally when data is changed in a database, it is written both to memory and to disk. When a commit happens, a relational database makes a commitment to freeze the data somewhere on real storage media. Remember, memory doesn't survive a crash or reboot. Even if the data is cached in memory, the database still has to write it to disk. MySQL binary logs or Oracle redo logs fit the bill.

With a MySQL cluster or distributed file system such as DRBD (Distributed Replicated Block Device) or Amazon Multi-AZ (Multi-Availability Zone), a commit occurs not only locally, but also at the remote end. A two-phase commit means waiting for an acknowledgment from the far end. Because of network and other latency, those commits can be slowed down by milliseconds, as though all the cars on a highway were slowed down by heavy loads. For those considering using Multi-AZ or read replicas, the Amazon RDS (Relational Database Service) use-case comparison at http://www.iheavy.com/2012/06/14/rds-or-mysql-ten-use-cases/ will be helpful.

Synchronous replication has these issues as well; hence, MySQL's solution is semi-synchronous, which makes some compromises in a real two-phase commit.

2. INSUFFICIENT CACHING

...


Article Link:
Your Name:
Your Email:
Recipient Email:
Message: