Entries by Kristi Anderson (18)

Thursday
Jun272019

2019 Open Source Database Report: Top Databases, Public Cloud vs. On-Premise, Polyglot Persistence

2019 Open Source Database Report: Top Databases, Public Cloud vs. On-Premise, Polyglot Persistence

Ready to transition from a commercial database to open source, and want to know which databases are most popular in 2019? Wondering whether an on-premise vs. public cloud vs. hybrid cloud infrastructure is best for your database strategy? Or, considering adding a new database to your application and want to see which combinations are most popular? We found all the answers you need at the Percona Live event last month, and broke down the insights into the following free trends reports:

Click to read more ...

Tuesday
Apr162019

MySQL High Availability Framework Explained – Part III: Failover Scenarios

MySQL High Availability Framework Explained – Part III: Failover Scenarios

In this three-part blog series, we introduced a High Availability (HA) Framework for MySQL hosting in Part I, and discussed the details of MySQL semisynchronous replication in Part II. Now in Part III, we review how the framework handles some of the important MySQL failure scenarios and recovers to ensure high availability.

MySQL Failover Scenarios

Scenario 1 – Master MySQL Goes Down

  • The Corosync and Pacemaker framework detects that the master MySQL is no longer available. Pacemaker demotes the master resource and tries to recover with a restart of the MySQL service, if possible.
  • At this point, due to the semisynchronous nature of the replication, all transactions committed on the master have been received by at least one of the slaves.
  • Pacemaker waits until all the received transactions are applied on the slaves and lets the slaves report their promotion scores. The score calculation is done in such a way that the score is ‘0’ if a slave is completely in sync with the master, and is a negative number otherwise.
  • Pacemaker picks the slave that has reported the 0 score and promotes that slave which now assumes the role of master MySQL on which writes are allowed.
  • After slave promotion, the Resource Agent triggers a DNS rerouting module. The module updates the proxy DNS entry with the IP address of the new master, thus, facilitating all application writes to be redirected to the new master.
  • Pacemaker also sets up the available slaves to start replicating from this new master.

Thus, whenever a master MySQL goes down (whether due to a MySQL crash, OS crash, system reboot, etc.), our HA framework detects it and promotes a suitable slave to take over the role of the master. This ensures that the system continues to be available to the applications.

Scenario 2 – Slave MySQL Goes Down

  • The Corosync and Pacemaker framework detects that the slave MySQL is no longer available.
  • Pacemaker tries to recover the resource by trying to restart MySQL on the node. If it comes up, it is added back to the current master as a slave and replication continues.
  • If recovery fails, Pacemaker reports that resource as down – based on which alerts or notifications can be generated. If necessary, the ScaleGrid support team will handle the recovery of this node.
  • In this case, there is no impact on the availability of MySQL services.

Scenario 3 – Network Partition – Network Connectivity Breaks Down Between Master and Slave Nodes

This is a classical problem in any distributed system where each node thinks the other nodes are down, while in reality, only the network communication between the nodes is broken. This scenario is more commonly known as split-brain scenario, and if not handled properly, can lead to more than one node claiming to be a master MySQL which in turn leads to data inconsistencies and corruption.

Let’s use an example to review how our framework deals with split-brain scenarios in the cluster. We assume that due to network issues, the cluster has partitioned into two groups – master in one group and 2 slaves in the other group, and we will denote this as [(M), (S1,S2)].

  • Corosync detects that the master node is not able to communicate with the slave nodes, and the slave nodes can communicate with each other, but not with the master.
  • The master node will not be able to commit any transactions as the semisynchronous replication expects acknowledgement from at least one of the slaves before the master can commit. At the same time, Pacemaker shuts down MySQL on the master node due to lack of quorum based on the Pacemaker setting ‘no-quorum-policy = stop’. Quorum here means a majority of the nodes, or two out of three in a 3-node cluster setup. Since there is only one master node running in this partition of the cluster, the no-quorum-policy setting is triggered leading to the shutdown of the MySQL master.
  • Now, Pacemaker on the partition [(S1), (S2)] detects that there is no master available in the cluster and initiates a promotion process. Assuming that S1 is up to date with the master (as guaranteed by semisynchronous replication), it is then promoted as the new master.
  • Application traffic will be redirected to this new master MySQL node and the slave S2 will start replicating from the new master.

Thus, we see that the MySQL HA framework handles split-brain scenarios effectively, ensuring both data consistency and availability in the event the network connectivity breaks between master and slave nodes.

This concludes our 3-part blog series on the MySQL High Availability (HA) framework using semisynchronous replication and the Corosync plus Pacemaker stack. At ScaleGrid, we offer highly available hosting for MySQL on AWS and MySQL on Azure that is implemented based on the concepts explained in this blog series. Please visit the ScaleGrid Console for a free trial of our solutions.

Wednesday
Apr032019

2019 PostgreSQL Trends Report: Private vs. Public Cloud, Migrations, Database Combinations & Top Reasons Used

2019 PostgreSQL Trends Report: Private vs. Public Cloud, Migrations, Database Combinations & Top Reasons Used

PostgreSQL is an open source object-relational database system that has soared in popularity over the past 30 years from its active, loyal, and growing community. For the 2nd year in a row, PostgreSQL has kept the title of #1 fastest growing database in the world according to the DBMS of the Year report by the experts at DB-Engines. So what makes PostgreSQL so special, and how is it being used today? We found the answers at the Postgres Conference in March where we surveyed PostgreSQL users, contributors, and SQL and NoSQL database administrators alike. In this free PostgreSQL Trends Report, we break down PostgreSQL hosting use across public cloud vs. private cloud vs. hybrid cloud, most popular cloud providers, migration trends, database combinations with Postgres, and why PostgreSQL is preferred over popular RDBMS alternatives.

Private Cloud vs. Public Cloud vs. Hybrid Cloud

Click to read more ...

Wednesday
Mar062019

2019 Database Trends – SQL vs. NoSQL, Top Databases, Single vs. Multiple Database Use

Most Important Metric Tracked For Database Performance - Queries, Reliability & Memory

Wondering which databases are trending in 2019? We asked hundreds of developers, engineers, software architects, dev teams, and IT leaders at DeveloperWeek to discover the current NoSQL vs. SQL usage, most popular databases, important metrics to track, and their most time-consuming database management tasks. Get the latest insights on MySQLMongoDBPostgreSQLRedis, and many others to see which database management systems are most favored this year.

SQL vs. NoSQL

Click to read more ...

Tuesday
Feb192019

Intro to Redis Cluster Sharding – Advantages, Limitations, Deploying & Client Connections

Intro to Redis Cluster Sharding – Advantages, Limitations, Deploying & Client Connections

Redis Cluster is the native sharding implementation available within Redis that allows you to automatically distribute your data across multiple nodes without having to rely on external tools and utilities. At ScaleGrid, we recently added support for Redis Clusters on our platform through our fully managed Redis hosting plans. In this post, we’re going to introduce you to the advanced Redis Cluster sharding opportunities, discuss its advantages and limitations, when you should deploy, and how to connect to your Redis Cluster.

Sharding with Redis Cluster

Click to read more ...

Tuesday
Jan082019

MySQL High Availability Framework Explained – Part II

In Part I, we introduced a High Availability (HA) framework for MySQL hosting and discussed various components and their functionality. Now in Part II, we will discuss the details of MySQL semisynchronous replication and the related configuration settings that help us ensure redundancy and consistency of the data in our HA setup. Make sure to check back in for Part III where we will review various failure scenarios that could arise and the way the framework responds and recovers from these conditions. What is MySQL Semisynchronous Replication? Simply put, in a MySQL semisynchronous replication configuration, the master commits transactions to the storage engine only after receiving acknowledgement from at least one of the slaves. The slaves would provide acknowledgement only after the events are received and copied to the relay logs and also flushed to the disk. This guarantees that for all transactions committed and returned to the client, the data exists on at least 2 nodes. The term ‘semi’ in semisynchronous (replication) is due to the fact that the master commits the transactions once the events are received and flushed to relay log, but not necessarily committed to the data files on the slave. This is in contrast to fully synchronous replication, where the transaction would have been committed on both the slave and the master before the session returns to the client.

Click to read more ...

Tuesday
Jan082019

Slow MySQL Start Time in GTID mode? Binary Log File Size May Be The Issue

Have you been experiencing slow MySQL startup times in GTID mode? We recently ran into this issue on one of our MySQL hosting deployments and set out to solve the problem. In this blog, we break down the issue that could be slowing down your MySQL restart times, how to debug for your deployment, and what you can do to decrease your start time and improve your understanding of GTID-based replication.

How We Found The Problem

Click to read more ...

Friday
Jan042019

How DevOps Should Use DBaaS (Database-as-a-Service) To Optimize Their Application Development

This post was written by Wendy Dessler of The Blog Frog.

Database-as-a-Service (DBaaS) is quickly gaining in popularity across the tech world. These software platform solutions helps users easily manage their database operations without having to really understand any of the abstractions. This allows developers, DBA’s and DevOps engineers to quickly automate their backups, create new SQL and NoSQL clusters, and monitor the performance of their databases for their application without requiring any internal database expertise.

DBaaS falls under the umbrella of Platform-as-a-Service (PaaS) where the platform itself is actually a database or several databases. This is a great choice for DevOps in particular because it allows for more developer agility, productivity, and also security.

Flexibility and scalability are becoming more important in the world of DevOps and technology in general, and we all know how fast this world moves. Businesses need new ways to keep up with the competition, and developers are looking for an easy, self-service model for managing their databases in order to optimize their app development. Let’s break down the individual benefits so you can decide if DBaaS is right for your DevOps team.

1. Outsourced Security and Administration

Click to read more ...

Page 1 2