Entries in administrator (8)

Monday
Feb172020

Important Health Checks for your MySQL Master-Slave Servers

In a MySQL master-slave high availability (HA) setup, it is important to continuously monitor the health of the master and slave servers so you can detect potential issues and take corrective actions. In this blog post, we explain some basic health checks you can do on your MySQL master and slave nodes to ensure your setup is healthy. The monitoring program or script must alert the high availability framework in case any of the health checks fails, enabling the high availability framework to take corrective actions in order to ensure service availability.

MySQL Master Server Health Checks

Click to read more ...

Friday
Oct182019

PostgreSQL Connection Pooling: Part 1 – Pros & Cons

PostgreSQL Connection Pooling: Part 1 – Pros & Cons

A long time ago, in a galaxy far far away, ‘threads’ were a programming novelty rarely used and seldom trusted. In that environment, the first PostgreSQL developers decided forking a process for each connection to the database is the safest choice. It would be a shame if your database crashed, after all.

Since then, a lot of water has flown under that bridge, but the PostgreSQL community has stuck by their original decision. It is difficult to fault their argument – as it’s absolutely true that:

Click to read more ...

Thursday
Oct032019

Redis Cloud Gets Easier with Fully Managed Hosting on Azure

Redis Cloud Gets Easier with Fully Managed Hosting on Azure

ScaleGrid, a rapidly growing leader in the Database-as-a-Service (DBaaS) space, has just launched their new fully managed Redis on Azure service. This Redis management solution allows startups up to enterprise-level organizations automate their Redis operations on Microsoft Azure dedicated cloud servers, alongside their other open source database deployments, including MongoDBMySQL and PostgreSQL.

Redis, the #1 key-value store and top 10 database in the world, has grown by over 300% in popularity over that past 5 years, per the DB-Engines knowledge base. The demand for Redis is skyrocketing across dozens of use cases, particularly for cache, queues, geospatial data, and high speed transactions. This simple database management system makes it very easy to store and retrieve pairs of keys and values, and is commonly paired with other database types to increase the speed and performance of an application. According to the 2019 Open Source Database Report, a majority of Redis deployments are used in conjunction with MySQL, and over half of Redis deployments are used with either PostgreSQL, MongoDB, and Elasticsearch.

ScaleGrid’s Redis hosting service allows these organizations to automate all of their time-consuming management tasks, such as backups, upgrades, scaling, replication, sharding, monitoring, alerts, log rotations, and OS patching, so their DBAs, developers, and DevOps teams can focus on new product development and optimizing performance. Additionally, organizations can customize their Redis persistence and host through their own Azure account which allows them to leverage advanced cloud capabilities like Azure Virtual Networks (VNET), Security Groups, and Reserved Instances to reduce long-term hosting costs up to 60%. 

“Cloud reliability has never been so important,” says Dharshan Rangegowda, Founder and CEO of ScaleGrid. “It’s crucial for organizations to properly configure their Redis deployments for high availability and disaster recovery, as a couple minutes of downtime can be detrimental to a company’s security and reputation.”

ScaleGrid is the only Redis cloud service that allows you to customize your master-slave and cross-datacenter configurations for 100% uptime and availability across 30 different Azure regions. They also allow you to keep full Redis admin access and SSH access to your machines, and you can learn more about their advantages over competitors Compose for Redis, RedisGreen, Redis Labs and Elasticache for Redis on their Compare Redis Providers page.

Monday
Sep162019

Managing High Availability in PostgreSQL – Part III: Patroni

Managing High Availability in PostgreSQL – Part III: Patroni - ScaleGrid Blog

In our previous blog posts, we discussed the capabilities and functioning of PostgreSQL Automatic Failover (PAF) by Cluster Labs and Replication Manager (repmgr) by 2ndQuadrant. In the final post of this series, we will review the last solution, Patroni by Zalando, and compare all three at the end so you can determine which high availability framework is best for your PostgreSQL hosting deployment.

Patroni for PostgreSQL

Click to read more ...

Tuesday
Sep032019

Top Redis Use Cases by Core Data Structure Types

Top Redis Use Cases by Core Data Structure Types - ScaleGrid Blog

Redis, short for Remote Dictionary Server, is a BSD-licensed, open-source in-memory key-value data structure store written in C language by Salvatore Sanfillipo and was first released on May 10, 2009. Depending on how it is configured, Redis can act like a database, a cache or a message broker. It’s important to note that Redis is a NoSQL database system. This implies that unlike SQL (Structured Query Language) driven database systems like MySQL, PostgreSQL, and Oracle, Redis does not store data in well-defined database schemas which constitute tables, rows, and columns. Instead, Redis stores data in data structures which makes it very flexible to use. In this blog, we outline the top Redis use cases by the different core data structure types.

Data Structures in Redis

Click to read more ...

Tuesday
Apr162019

MySQL High Availability Framework Explained – Part III: Failover Scenarios

MySQL High Availability Framework Explained – Part III: Failover Scenarios

In this three-part blog series, we introduced a High Availability (HA) Framework for MySQL hosting in Part I, and discussed the details of MySQL semisynchronous replication in Part II. Now in Part III, we review how the framework handles some of the important MySQL failure scenarios and recovers to ensure high availability.

MySQL Failover Scenarios

Scenario 1 – Master MySQL Goes Down

  • The Corosync and Pacemaker framework detects that the master MySQL is no longer available. Pacemaker demotes the master resource and tries to recover with a restart of the MySQL service, if possible.
  • At this point, due to the semisynchronous nature of the replication, all transactions committed on the master have been received by at least one of the slaves.
  • Pacemaker waits until all the received transactions are applied on the slaves and lets the slaves report their promotion scores. The score calculation is done in such a way that the score is ‘0’ if a slave is completely in sync with the master, and is a negative number otherwise.
  • Pacemaker picks the slave that has reported the 0 score and promotes that slave which now assumes the role of master MySQL on which writes are allowed.
  • After slave promotion, the Resource Agent triggers a DNS rerouting module. The module updates the proxy DNS entry with the IP address of the new master, thus, facilitating all application writes to be redirected to the new master.
  • Pacemaker also sets up the available slaves to start replicating from this new master.

Thus, whenever a master MySQL goes down (whether due to a MySQL crash, OS crash, system reboot, etc.), our HA framework detects it and promotes a suitable slave to take over the role of the master. This ensures that the system continues to be available to the applications.

Scenario 2 – Slave MySQL Goes Down

  • The Corosync and Pacemaker framework detects that the slave MySQL is no longer available.
  • Pacemaker tries to recover the resource by trying to restart MySQL on the node. If it comes up, it is added back to the current master as a slave and replication continues.
  • If recovery fails, Pacemaker reports that resource as down – based on which alerts or notifications can be generated. If necessary, the ScaleGrid support team will handle the recovery of this node.
  • In this case, there is no impact on the availability of MySQL services.

Scenario 3 – Network Partition – Network Connectivity Breaks Down Between Master and Slave Nodes

This is a classical problem in any distributed system where each node thinks the other nodes are down, while in reality, only the network communication between the nodes is broken. This scenario is more commonly known as split-brain scenario, and if not handled properly, can lead to more than one node claiming to be a master MySQL which in turn leads to data inconsistencies and corruption.

Let’s use an example to review how our framework deals with split-brain scenarios in the cluster. We assume that due to network issues, the cluster has partitioned into two groups – master in one group and 2 slaves in the other group, and we will denote this as [(M), (S1,S2)].

  • Corosync detects that the master node is not able to communicate with the slave nodes, and the slave nodes can communicate with each other, but not with the master.
  • The master node will not be able to commit any transactions as the semisynchronous replication expects acknowledgement from at least one of the slaves before the master can commit. At the same time, Pacemaker shuts down MySQL on the master node due to lack of quorum based on the Pacemaker setting ‘no-quorum-policy = stop’. Quorum here means a majority of the nodes, or two out of three in a 3-node cluster setup. Since there is only one master node running in this partition of the cluster, the no-quorum-policy setting is triggered leading to the shutdown of the MySQL master.
  • Now, Pacemaker on the partition [(S1), (S2)] detects that there is no master available in the cluster and initiates a promotion process. Assuming that S1 is up to date with the master (as guaranteed by semisynchronous replication), it is then promoted as the new master.
  • Application traffic will be redirected to this new master MySQL node and the slave S2 will start replicating from the new master.

Thus, we see that the MySQL HA framework handles split-brain scenarios effectively, ensuring both data consistency and availability in the event the network connectivity breaks between master and slave nodes.

This concludes our 3-part blog series on the MySQL High Availability (HA) framework using semisynchronous replication and the Corosync plus Pacemaker stack. At ScaleGrid, we offer highly available hosting for MySQL on AWS and MySQL on Azure that is implemented based on the concepts explained in this blog series. Please visit the ScaleGrid Console for a free trial of our solutions.

Thursday
Nov172011

Five Misconceptions on Cloud Portability

The term "cloud portability" is often considered a synonym for "Cloud API portability," which implies a series of misconceptions.

If we break away from dogma, we can find that what we really looking for in cloud portability is Application portability between clouds which can be a vastly simpler requirement, as we can achieve application portability without settling on a common Cloud API.

In this post i'll be covering five common misconceptions people have WRT to cloud portability.

  1. Cloud portability = Cloud API portability. API portability is easy; cloud API portability is not.
  2. The main incentive for Cloud Portability is - Avoiding Vendor lock-in.Cloud portability is more about business agility than it is about vendor lock-in.
  3. Cloud portability isn’t for startups. Every startup that is expecting rapid growth should re-examine their deployments and plan for cloud portability rather than wait to be forced to make the switch when you are least prepared to do so.
  4. Cloud portability = Compromising on the least common denominator.Application portability doesn't require compromise on the least common denominator as most of the interaction with the cloud API happens outside of our application code anyway, to handle things like provisioning, setup, installation, scaling, monitoring, etc.
  5. The effort for achieving cloud portability far exceed the value. The effort to achieve cloud portability is far less than it used to be, in most cases, making it a greater and more valuable priority (with less investment) than it used to be.

Click to ready more..

Thursday
Feb072008

clusteradmin.blogspot.com - blog about building and administering clusters

A blog about cluster administration. Written by a System Administrator working at HPC (High Performance Computing) data-center, mostly dealing with PC clusters (100s of servers), SMP machines and distributed installations. The blog concentrates on software/configuration/installation management systems, load balancers, monitoring and other cluster-related solutions.

Click to read more ...