Entries in databases (22)

Tuesday
Sep012020

MySQL on Azure Performance Benchmark – ScaleGrid vs. Azure Database

Microsoft Azure is one of the most popular cloud providers in the world, and a natural fit for database hosting on applications leveraging Microsoft across their infrastructure. MySQL is the number one open source database that’s commonly hosted through Azure instances. While Microsoft offers their own Azure Database product, there are other alternatives available that may be able to help you improve your MySQL performance. In this blog post, we compare Azure Database for MySQL vs. ScaleGrid MySQL on Azure so you can see which provider offers the best throughput and latency performance. We measure latency in ms 95th percentile latency.

Click to read more ...

Wednesday
Jan222020

Follower Clusters – 3 Major Use Cases for Syncing SQL & NoSQL Deployments

Follower Clusters – 3 Major Use Cases for Syncing SQL & NoSQL Deployments

Follower clusters are a ScaleGrid feature that allows you to keep two independent database systems (of the same type) in sync. Unlike cloning or replication, this allows you to maintain an active, point-in-time copy of your production data. This extra cluster, known as a follower cluster, can be leveraged for multiple use cases, including for analyzing, optimizing and testing your application performance for MongoDB, MySQL and PostgreSQL. In this blog post, we will cover the top three scenarios to leverage follower clusters for your application.

How Do Follower Clusters Differ From Replication?

Unlike a static clone, this data imports on a set schedule so your follower cluster is always in sync with your production cluster. Here are a few critical ways in which it differs from replication:

Click to read more ...

Tuesday
Sep032019

Top Redis Use Cases by Core Data Structure Types

Top Redis Use Cases by Core Data Structure Types - ScaleGrid Blog

Redis, short for Remote Dictionary Server, is a BSD-licensed, open-source in-memory key-value data structure store written in C language by Salvatore Sanfillipo and was first released on May 10, 2009. Depending on how it is configured, Redis can act like a database, a cache or a message broker. It’s important to note that Redis is a NoSQL database system. This implies that unlike SQL (Structured Query Language) driven database systems like MySQL, PostgreSQL, and Oracle, Redis does not store data in well-defined database schemas which constitute tables, rows, and columns. Instead, Redis stores data in data structures which makes it very flexible to use. In this blog, we outline the top Redis use cases by the different core data structure types.

Data Structures in Redis

Click to read more ...

Thursday
Jun272019

2019 Open Source Database Report: Top Databases, Public Cloud vs. On-Premise, Polyglot Persistence

2019 Open Source Database Report: Top Databases, Public Cloud vs. On-Premise, Polyglot Persistence

Ready to transition from a commercial database to open source, and want to know which databases are most popular in 2019? Wondering whether an on-premise vs. public cloud vs. hybrid cloud infrastructure is best for your database strategy? Or, considering adding a new database to your application and want to see which combinations are most popular? We found all the answers you need at the Percona Live event last month, and broke down the insights into the following free trends reports:

Click to read more ...

Tuesday
Apr162019

MySQL High Availability Framework Explained – Part III: Failover Scenarios

MySQL High Availability Framework Explained – Part III: Failover Scenarios

In this three-part blog series, we introduced a High Availability (HA) Framework for MySQL hosting in Part I, and discussed the details of MySQL semisynchronous replication in Part II. Now in Part III, we review how the framework handles some of the important MySQL failure scenarios and recovers to ensure high availability.

MySQL Failover Scenarios

Scenario 1 – Master MySQL Goes Down

  • The Corosync and Pacemaker framework detects that the master MySQL is no longer available. Pacemaker demotes the master resource and tries to recover with a restart of the MySQL service, if possible.
  • At this point, due to the semisynchronous nature of the replication, all transactions committed on the master have been received by at least one of the slaves.
  • Pacemaker waits until all the received transactions are applied on the slaves and lets the slaves report their promotion scores. The score calculation is done in such a way that the score is ‘0’ if a slave is completely in sync with the master, and is a negative number otherwise.
  • Pacemaker picks the slave that has reported the 0 score and promotes that slave which now assumes the role of master MySQL on which writes are allowed.
  • After slave promotion, the Resource Agent triggers a DNS rerouting module. The module updates the proxy DNS entry with the IP address of the new master, thus, facilitating all application writes to be redirected to the new master.
  • Pacemaker also sets up the available slaves to start replicating from this new master.

Thus, whenever a master MySQL goes down (whether due to a MySQL crash, OS crash, system reboot, etc.), our HA framework detects it and promotes a suitable slave to take over the role of the master. This ensures that the system continues to be available to the applications.

Scenario 2 – Slave MySQL Goes Down

  • The Corosync and Pacemaker framework detects that the slave MySQL is no longer available.
  • Pacemaker tries to recover the resource by trying to restart MySQL on the node. If it comes up, it is added back to the current master as a slave and replication continues.
  • If recovery fails, Pacemaker reports that resource as down – based on which alerts or notifications can be generated. If necessary, the ScaleGrid support team will handle the recovery of this node.
  • In this case, there is no impact on the availability of MySQL services.

Scenario 3 – Network Partition – Network Connectivity Breaks Down Between Master and Slave Nodes

This is a classical problem in any distributed system where each node thinks the other nodes are down, while in reality, only the network communication between the nodes is broken. This scenario is more commonly known as split-brain scenario, and if not handled properly, can lead to more than one node claiming to be a master MySQL which in turn leads to data inconsistencies and corruption.

Let’s use an example to review how our framework deals with split-brain scenarios in the cluster. We assume that due to network issues, the cluster has partitioned into two groups – master in one group and 2 slaves in the other group, and we will denote this as [(M), (S1,S2)].

  • Corosync detects that the master node is not able to communicate with the slave nodes, and the slave nodes can communicate with each other, but not with the master.
  • The master node will not be able to commit any transactions as the semisynchronous replication expects acknowledgement from at least one of the slaves before the master can commit. At the same time, Pacemaker shuts down MySQL on the master node due to lack of quorum based on the Pacemaker setting ‘no-quorum-policy = stop’. Quorum here means a majority of the nodes, or two out of three in a 3-node cluster setup. Since there is only one master node running in this partition of the cluster, the no-quorum-policy setting is triggered leading to the shutdown of the MySQL master.
  • Now, Pacemaker on the partition [(S1), (S2)] detects that there is no master available in the cluster and initiates a promotion process. Assuming that S1 is up to date with the master (as guaranteed by semisynchronous replication), it is then promoted as the new master.
  • Application traffic will be redirected to this new master MySQL node and the slave S2 will start replicating from the new master.

Thus, we see that the MySQL HA framework handles split-brain scenarios effectively, ensuring both data consistency and availability in the event the network connectivity breaks between master and slave nodes.

This concludes our 3-part blog series on the MySQL High Availability (HA) framework using semisynchronous replication and the Corosync plus Pacemaker stack. At ScaleGrid, we offer highly available hosting for MySQL on AWS and MySQL on Azure that is implemented based on the concepts explained in this blog series. Please visit the ScaleGrid Console for a free trial of our solutions.

Wednesday
Apr032019

2019 PostgreSQL Trends Report: Private vs. Public Cloud, Migrations, Database Combinations & Top Reasons Used

2019 PostgreSQL Trends Report: Private vs. Public Cloud, Migrations, Database Combinations & Top Reasons Used

PostgreSQL is an open source object-relational database system that has soared in popularity over the past 30 years from its active, loyal, and growing community. For the 2nd year in a row, PostgreSQL has kept the title of #1 fastest growing database in the world according to the DBMS of the Year report by the experts at DB-Engines. So what makes PostgreSQL so special, and how is it being used today? We found the answers at the Postgres Conference in March where we surveyed PostgreSQL users, contributors, and SQL and NoSQL database administrators alike. In this free PostgreSQL Trends Report, we break down PostgreSQL hosting use across public cloud vs. private cloud vs. hybrid cloud, most popular cloud providers, migration trends, database combinations with Postgres, and why PostgreSQL is preferred over popular RDBMS alternatives.

Private Cloud vs. Public Cloud vs. Hybrid Cloud

Click to read more ...

Tuesday
Feb192019

Intro to Redis Cluster Sharding – Advantages, Limitations, Deploying & Client Connections

Intro to Redis Cluster Sharding – Advantages, Limitations, Deploying & Client Connections

Redis Cluster is the native sharding implementation available within Redis that allows you to automatically distribute your data across multiple nodes without having to rely on external tools and utilities. At ScaleGrid, we recently added support for Redis Clusters on our platform through our fully managed Redis hosting plans. In this post, we’re going to introduce you to the advanced Redis Cluster sharding opportunities, discuss its advantages and limitations, when you should deploy, and how to connect to your Redis Cluster.

Sharding with Redis Cluster

Click to read more ...

Tuesday
Jan082019

Slow MySQL Start Time in GTID mode? Binary Log File Size May Be The Issue

Have you been experiencing slow MySQL startup times in GTID mode? We recently ran into this issue on one of our MySQL hosting deployments and set out to solve the problem. In this blog, we break down the issue that could be slowing down your MySQL restart times, how to debug for your deployment, and what you can do to decrease your start time and improve your understanding of GTID-based replication.

How We Found The Problem

Click to read more ...

Wednesday
May032017

Homegrown master-master replication for a NoSQL database

Many of you may have already heard about the high performance of the Tarantool DBMS, about its rich toolset and certain features. Say, it has a really cool on-disk storage engine called Vinyl, and it knows how to work with JSON documents. However, most articles out there tend to overlook one crucial thing: usually, Tarantool is regarded simply as storage, whereas its killer feature is the possibility of writing code inside it, which makes working with your data extremely effective. If you’d like to know how igorcoding and I built a system almost entirely inside Tarantool, read on.

If you’ve ever used the Mail.Ru email service, you probably know that it allows collecting emails from other accounts. If the OAuth protocol is supported, we don’t need to ask a user for third-party service credentials to do that — we can use OAuth tokens instead. Besides, Mail.Ru Group has lots of projects that require authorization via third-party services and need users’ OAuth tokens to work with certain applications. That’s why we decided to build a service for storing and updating tokens.

I guess everybody knows what an OAuth token looks like. To refresh your memory, it’s a structure consisting of 3–4 fields:

Click to read more ...

Monday
Nov282016

How to Make Your Database 200x Faster Without Having to Pay More?

This is a guest repost Barzan Mozafari, an assistant professor at University of Michigan and an advisor to a new startup, snappydata.io, that recently launched an open source OLTP + OLAP Database built on Spark.

Almost everyone these days is complaining about performance in one way or another. It’s not uncommon for database administrators and programmers to constantly find themselves in a situation where their servers are maxed out, or their queries are taking forever. This frustration is way too common for all of us. The solutions are varied. The most typical one is squinting at the query and blaming the programmer for not being smarter with their query. Maybe they could have used the right index or materialized view or just re-write their query in a better way. Other times, you might have to spin up a few more nodes if your company is using a cloud service. In other cases, when your servers are overloaded with too many slow queries, you might set different priorities for different queries so that at least the more urgent one (e.g., CEO queries) finish faster. When the DB does not support priority queues, your admin might even cancel your queries to free up some resources for the more urgent queries.

No matter which one of these experiences you’ve had, you’re probably familiar with the pain of having to wait for slow queries or having to pay for more cloud instances or buying faster and bigger servers. Most people are familiar with traditional database tuning and query optimization techniques, which come with their own pros and cons. So we’re not going to talk about those here. Instead, in this post, we’re going to talk about more recent techniques that are far less known to people and in many cases actually lead to much better performance and saving opportunities.

To start, consider these scenarios:

Click to read more ...